Role of Filia, a maternal effect gene, in maintaining euploidy during cleavage-stage mouse embryogenesis.
نویسندگان
چکیده
During oogenesis, mammalian eggs accumulate proteins required for early embryogenesis. Although limited data suggest a vital role of these maternal factors in chromatin reprogramming and embryonic genome activation, the full range of their functions in preimplantation development remains largely unknown. Here we report a role for maternal proteins in maintaining chromosome stability and euploidy in early-cleavage mouse embryogenesis. Filia, expressed in growing oocytes, encodes a protein that binds to MATER and participates in a subcortical maternal complex essential for cleavage-stage embryogenesis. The depletion of maternal stores of Filia impairs preimplantation embryo development with a high incidence of aneuploidy that results from abnormal spindle assembly, chromosome misalignment, and spindle assembly checkpoint (SAC) inactivation. In helping to ensure normal spindle morphogenesis, Filia regulates the proper allocation of the key spindle assembly regulators (i.e., AURKA, PLK1, and gamma-tubulin) to the microtubule-organizing center via the RhoA signaling pathway. Concurrently, Filia is required for the placement of MAD2, an essential component of the SAC, to kinetochores to enable SAC function. Thus, Filia is central to integrating the spatiotemporal localization of regulators that helps ensure euploidy and high-quality cell cycle progression in preimplantation mouse development. Defects in the well-conserved human homologue could play a similar role and account for recurrent human fetal wastage.
منابع مشابه
P-127: Characterization of Filia, A Maternal Effect Gene, in Bovine Oocytes and Embryos
Background: Genetic analysis in mice has lead to find about maternal effect genes such as Filia. Filia knock out mice have a 50% decrease in fertility. Filia dysfunction causes disorders in pre-implantation development. Mutations in human Filia gene, cause FBHM (Familial Biparental Hydatidiform Mole) in women. Filia protein in mice is homologous to that of rat and human, so this idea has emerge...
متن کاملMaternally derived FILIA-MATER complex localizes asymmetrically in cleavage-stage mouse embryos.
Initial cell lineages that presage the inner cell mass and extra-embryonic trophectoderm are established when eight blastomeres compact to form polarized morulae in preimplantation mouse development. FILIA has been identified as a binding partner to MATER (maternal antigen that embryos require; also known as NLRP5), which is encoded by a maternal effect gene. Products of each gene are detected ...
متن کاملP-65: Maternal Effect Genes in Mammalian Reproduction
Background: Regulation of gene expression in mammalian embryos is not completely known. Pre-implantation embryos need maternal RNA and proteins synthesized during oogenesis, to regulate development before mater-embryo transition, as the grown oocyte and the 1-cell zygote are transcriptionally silent. There are some oocyte-specific genes called maternal effect genes which may account for this ea...
متن کاملI-44: Mutagenesis during Embryogenesis
We developed several novel tools to genome wide screen for CNVs and SNPs in single cells. When applied to cleavage stage embryos from young fertile couples we discovered, unexpectedly, an extremely high incidence of chromosomal instability, a hallmark of tumorigenesis (Vanneste et al., Nature Medicine, 2009; Vanneste et al., Hum.Reprod., 2011). Not only mosaicisms for whole chromosome aneuploid...
متن کاملMaternal control of early mouse development.
The hiatus between oocyte and embryonic gene transcription dictates a role for stored maternal factors in early mammalian development. Encoded by maternal-effect genes, these factors accumulate during oogenesis and enable the activation of the embryonic genome, the subsequent cleavage stages of embryogenesis and the initial establishment of embryonic cell lineages. Recent studies in mice have y...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 106 18 شماره
صفحات -
تاریخ انتشار 2009